Power HIL Simulator (SimP)

A prototype to develop a high bandwidth interface

O. Tremblay, R. Gagnon, P. Giroux, K. Slimani Hydro-Québec Research Institute (IREQ)

H. Fortin-Blanchette

École de Technologie Supérieure (ÉTS)

3rd Annual Grid Simulator Workshop Tallahassee, Florida | November 5-6, 2015

> SimP at a glance

- > SimP at a glance
- > Interface issue

- > SimP at a glance
- > Interface issue
- > Prototype design:
 - Power amplifier
 - Controller
 - Simulator

- > SimP at a glance
- > Interface issue
- > Prototype design:
 - Power amplifier
 - Controller
 - Simulator
- > Conclusion

SimP at a glance

>Context

- Research & Testing Infrastructure for the <u>validation of simulation models</u> and for studying the dynamic behavior of electrical equipments connected <u>to their</u> <u>power system</u>.
- Scope: Smart Grid, Energy Storage, Renewable Energy Integration, ground transportation electrification

SimP at a glance

>Context

- Research & Testing Infrastructure for the validation of simulation models and for studying the dynamic behavior of electrical equipments connected to their power system.
- Scope: Smart Grid, Energy Storage, Renewable Energy Integration, ground transportation electrification

>Current Developments

 Preliminary project consisting to the implementation of a prototype (low power) of a Power Simulator controlled in closed-loop by a real-time simulated power system (Hypersim simulator)

SimP at a glance

>Context

- Research & Testing Infrastructure for the validation of simulation models and for studying the dynamic behavior of electrical equipments connected to their power system.
- Scope: Smart Grid, Energy Storage, Renewable Energy Integration, ground transportation electrification

>Current Developments

 Preliminary project consisting to the implementation of a prototype (low power) of a Power Simulator controlled in closed-loop by a real-time simulated power system (Hypersim simulator)

>Project Outcomes

- World-class equipment
- Important extension of the IREQ's test line
- Major increase in testing capability
- Possibility of collaborations and partnerships on various projects

Power Simulator 10-MVA, 25-kV

IREQ's
Distribution
Test Line

Major Extension of the Test Line

Major increase in testing capacity

CENER Clemson Florida State Institute NREL

University University Germany

Validation of the performance of actual wind turbines

Validation of the performance of actual wind turbines

Integration of renewable energy and storage to distribution networks

Distribution and transmission networks simulated into Hypersim

- Harmonics
- Voltage sags

Isolated networks

- Performance validation before commissioning
 - Voltage and Frequency Control
 - Power Quality validation

Isolated network simulated into Hypersim

Interface issue

> Original system

Interface issue

> Original system

Interface issue

> Original system

> Modified system (decoupled)

- > Before building such equipment, we need to answer some questions:
 - What kind of controller (FPGA, DSP) ?
 - Control algorithm, switching freq?

- > Before building such equipment, we need to answer some questions:
 - What kind of controller (FPGA, DSP) ?
 - Control algorithm, switching freq?
 - What about the interface between simulator and amplifier?

- > Before building such equipment, we need to answer some questions:
 - What kind of controller (FPGA, DSP) ?
 - Control algorithm, switching freq?
 - What about the interface between simulator and amplifier?
 - Latency is the work of the devil!!

- > Before building such equipment, we need to answer some questions:
 - What kind of controller (FPGA, DSP) ?
 - Control algorithm, switching freq?
 - What about the interface between simulator and amplifier?
 - Latency is the work of the devil!!
- To answer those questions, we need a flexible reduced scale power amplifier!!

The features of the prototype

- > Single phase / three-phase
- Ideal (pure) /real voltage waveform synthesis
- > Adjustable dynamics (to meet full scale constraints)
- > Adjustable number of level
- > Adjustable transient capability

The features of the prototype

- > Single phase / three-phase
- Ideal (pure) /real voltage waveform synthesis
- > Adjustable dynamics (to meet full scale constraints)
- > Adjustable number of level
- > Adjustable transient capability

The solution: a self-powered multi-level converter

Prototype: the cell

Prototype: the cell

Prototype: simulator and converter

Prototype: simulator and converter

Conclusion

> Power Simulator:

 Strategic research & testing infrastructure for validation of simulation models and for studying the dynamic behavior of electrical equipments connected to their power systems

Conclusion

> Power Simulator:

- Strategic research & testing infrastructure for validation of simulation models and for studying the dynamic behavior of electrical equipments connected to their power systems
- > Development of a reduced scale system to:
 - Validate the converter controls
 - Develop a stable, robust and high bandwidth interface between the simulator and the power amplifier

Questions ?

